|
Thermal noise (Johnson noise)
Thermal noise (Johnson noise)
D.E.V.I.C.E. is an encyclopedia of terms used by manufacturers of test and measurement equipment. T&M Atlantic created this service to better explain the functionality of instruments it offers, and to highlight the latest developments in the world of measurement equipment. We are using such tools as animation to bring words and pictures to life and to create not just an understanding but also an appreciation for technology that goes into the design of every instrument.
D.E.V.I.C.E. on Request
If you are searching for a particular term or definition, please contact us and our engineers will be glad to explain it to you.
Thermal noise (Johnson noise) is the electronic noise generated by the thermal agitation of the charge carriers (usually the electrons) inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.
Thermal noise in an ideal resistor is approximately white, meaning that the power spectral density is nearly constant throughout the frequency spectrum (however see the section below on extremely high frequencies). When limited to a finite bandwidth, thermal noise has a nearly Gaussian amplitude distribution.
In the picture: a resistor at nonzero temperature which has Johnson noise
www.wikipedia.org
Back to the list
Rating Search by section
D.E.V.I.C.E. services
|
|